Electric Vehicles: Supporting Renewable Integration as a Grid Resource

California Energy Commission
IEPR Committee Workshop
Energy Storage for Renewable Integration

Michael Kintner-Meyer
Pacific Northwest National Laboratory

Email: Michael.Kintner-Meyer@pnl.gov Phone: 509.375.4306

Case Study: Storage Opportunity in the NWPP

What questions did we address?

- What are the likely balancing requirements for the NWPP in a 14.4 GW wind scenario for 2020 (35% wind capacity compared to total installed, about 12% based on generation)
- Relative cost competitiveness of different energy storage compared with DR and GT
- Optimal batteries sizes (right-sizing) and hybridizing
- What are the energy arbitrage opportunities?
- How much does location of storage matter?

Source: Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP). PNNL-19300. April 2010

Locations of existing and presumed capacity expansion of wind

Assessment: Benefits of PHEVs for Integrating Renewable Energy Resources

- Question to answer:
 - How many electric vehicles are necessary to meet new balancing requirements for integrating wind generation?
- Assumptions
 - Basic assumptions from PNNL report on storage integration into NWPP⁽¹⁾
 - Balancing requirements for wind capacity to increase from 4.2 to 14.4 GW (RPS of 12%)
 - Requires 1.8 GW up and 1.8 GW down for intra-hour balancing
 - NHTS 2001 travel patterns⁽²⁾

Number of vehicles performing V2G half to meet new balancing requirements⁽³⁾

	BEV (110 miles range) 240V (50%) 120V (50%)	
	charging	
	home	home+work
No of Vehicles	xx mill	yy mill
% of today's vehicle stock	>100%	<100%

^{(1):} Source: PNNL-19300. Energy Storage for Power Systems Applications: A Regional Assessment for the Northwest Power Pool (NWPP)

^{(2):} Source: Department of Transportation: 2001. National Household Travel Survey

^{(3):} Report expected to be published in July, 2011

Assessment: Load can provide balancing/regulation services (V2G half) – Definition and value

V2G

- provides regulation service as a <u>load</u> and <u>generator</u>
- requires <u>charging</u> and <u>discharging</u> according to grid operators signal

Capacity value (-7.2 to 7.2=14.4kW)

V2G half

- provides regulation service as a load only
- · requires only charging
- modulates charging

Capacity value (0 to 7.2=7.2 kW)

Attribute of "V2G half":

- provides regulation service with ½ the capacity value of V2G
- however, less than half the cost because
 - no interconnection gear with grid necessary because no electricity goes back into grid
 - removes any uncertainties regarding battery life reduction because of extra cycling

Demonstrate Grid FriendlyTM Charging Technologies

Grid Friendly Charger Controller

- Question to answer:
 - What are the implementation issues of grid friendly charging strategies
- Implementation
 - Grid Friendly Charger Controller
 - PNNL Test Vehicle
 - Coulomb Charging Station
- Scope
 - Demonstrate Grid Friendly Charging
 - Strategies
 - Regulation services (V2G half)
 - Price-based
 - Communications
 - Utilize emerging SAE standards
 - Collaborate with ANL and NREL
 - Collaborate with ARRA Projects

